
Page 1 of 11

UCRL-MA-153588

Merlot Design

June 10, 2003 - Version 0.2

Approved for public release; further
dissemination unlimited

champie1
S. D. Ahern

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of
Energy by the University of California, Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48.

Page 2 of 11

Page 3 of 11

UCRL-MA-153588

Merlot Design

Approved for public release; further
dissemination unlimited

Sean Ahern – LLNL

Merlot Design

Version history:
2/14/03: Version 0.1 (Sean Ahern – LLNL)
6/10/03: Version 0.2 (Sean Ahern – LLNL)

 1. Abstract

We describe Merlot, a system for delivery of digital imagery over high speed
networks. We describevarioususecases,the client/serverinteraction,andthe image
andnetworkcodecs. We alsodescribesomepossibleapplicationsusingMerlot and
future work.

 2. Motivation

LLNL hasmanylargevisualizationsystems(SGIs, variousclusters,etc.)thatareused
for large-scalevisualizationwork. In generalthesesystemsareusedfor visualization
in one of three ways:

 1.An analogvideo signal is routedthrougha video switch to individual offices
by way of a fiber-optic connection.

 2.Analogvideosignalsareroutedthrougha videoswitchto theprojectors/panels
making up a tiled display such as a powerwall.

 3.As a large sort-last software-based rendering system, usually using Mesa.

While these methods have been successful, they have a number of problems.

For the first two analog-deliverymethods,thereis a mismatchbetweenthenumberof
videooutputsof thevisualizationsystem(s)andthenumberof userswho desirehigh-
endvisualizationcapabilities. While a video switchcanhelp moveresourcesaround,
this can become rather cumbersome to schedule and control.

Theanalogvideosignalmethodsalsohavetheproblemof distance.Thevideosignals
canonly be extendedso far until signaldegradationmakesthemunusable.As more
visualizationsystemscomeon line, a hardware-acceleratedsolutionother than fiber-
optics must be found.

The Mesasolution doesnot tap the hardware-accelerationfeaturesof the machine.
It’s not a reasonable solution in general for large-scale visualization.

LLNL is currently in the planningstagesof ASCI purpledeployment. It is expected
thatwe will wish to deliver imageryat high speedsfrom Purpleandits accompanying
machineto users’offices. Becauseof the limitations mentionedabove,we havea
need to find an alternate image delivery system than we currently have deployed.

 3. History

Merlot startedlife asa projectto testthe feasibility of redirectingtheOpenGLstream
of an unmodifiedapplicationto a high-endvisualizationserver,renderingthere,then
deliveringtherenderedpixelsovera networkto a low-endfinal displaydevice.In the

Page 4 of 11

summer of 2001, we wrote a prototype of this system, using a shared-library
replacementmechanismsimilar to thatof Chromium.A few different imageencoding
andcompressiontechniquesweretested.This systemprovedthefeasibility of suchan
approachfor remotevisualization.However,it raiseda numberof issuesthatwe hope
to address in Merlot.

Thesystemfor compressingandencodingframeswasvery naïve. It did not takeinto
accountissuessuchasquality of service,progressiveencoding,or lossycompression.
Since this is a current researchtopic in many laboratories,we decidedthat having
hard-coded encoding mechanisms was too restrictive.

Also, thesystemuseda singleTCPsocketfor all communication.While this provided
great flexibility, it did not allow other network infrastructures,such as UDP,
multiplexing several connections, or infrastructures like Myrinet.

We decidedto split up thejob of OpenGLredirection/imageacquisitionandthejob of
imageencoding/delivery.The lower-leveljob of imageencodinganddelivery is now
the responsibilityof the Merlot library. The job of OpenGL redirectionand image
blitting on anX11 displayis thejob of a separateapplication,written to usetheimage
delivery services of the Merlot library. We discuss this application in section 6.1.

 4. Use cases

In consideringa newdesignfor digital deliveryof imagery,we consideredtwo major
use cases:

 1.Quantitativevisualizationwork in an office. A useris runninga quantitative
visualizationapplication like EnSight,VisIt, or Paraview. They want very
accurateimagery,andtheyarewilling to wait someamountof time aslong as
the imageis guaranteedto be correct. Since the user is actively interacting
with the imagery, latency must be minimized.

 2.Playingananimation. In this case,imagerymustbedeliveredvery quickly to
a destination. Since the acuity of the humaneye decreaseswhen viewing
imageryin motion,detail is not asimportant. This usecasevaluesthroughput
greater than accuracy. High latency is acceptable in this case.

The machineson which the senderandreceiverarelocatedmay havemorethanone
networkinterfacebetweenthem. Due to the constraintsof multi-personusageof the
machines,one or more of the network interfacesmay be filled with other traffic.
Merlot could conceivablybe askedto detectthis andchangeits communicationpaths
to most efficiently take advantage of the available network bandwidth.

Discussionswith representativesfrom HP have revealedanother possibleuse of
Merlot that mustbe considered.In manycircumstances,theremay be morethanone
sourceof imagery and many destinationsfor the same. While we have primarily
consideredthe point-to-pointcase,theremay be designconsiderationsthat can help
facilitate the fan-in and fan-out natureof cluster-basedimage delivery to multiple
destinations. We discuss these possibilities in section 7.2.

Page 5 of 11

 5. Design

 5.1. Overview

Fundamentally,Merlot is an infrastructurefor encodingand delivering imagery
from point to point on a network. The work of imageencoding/decodingandthe
work of network delivery are performedby interchangeableplugins, similar to
Photoshopor Netscapeplugins. Merlot is intendedto be a delivery vehicle for
researchinto imageencodingandnetworkdelivery. As such,we hopethatexisting
work in this area can be incorporated into Merlot with little modification.

Merlot is a client/serverarchitecture,consistingof a client API anda serverAPI,
each linked into an application. The two sides are connectedby a network
connection,with encodedimagery and quality-of-servicedata being delivered
betweenthem.In Merlot terminology,thetwo sidesarecalledthe“sender”andthe
“receiver”. Each endpoint is called a “node”.

A nodeconsistsof severalparts,asseenin the
figure to the right.

When the application initializes Merlot, the
theplugin managerbeginits work. Theplugin
managerhandlesthe creationand destruction
of the image and network codecs,as well
creation and management of the frame
manager.Whenanimageis readto besentto a receiver,theapplicationhandsit to
the frame manager,which keepsa circular buffer of previous frames. It then
informs the imageencoderthata newframeis ready. The imageencoderencodes
the frame, and hands it to the network encoder for transmission.

The reverse process
occurs at the receiver
end of the network.
Information about
when the frame was
displayed at the
receiveris recordedby
the session manager.
This information is
communicatedback to
the sender’s session
managerso that the codecsmay tunetheir performance.Theapplicationmayeven
decideto swapout thecodecsfor otheronesto tuneperformance.A full diagramof
this architecture may be seen in the figure above.

 5.2. Time sequence of operations

The details of executionare best consideredthrough a descriptionof the time
sequence of how Merlot operates.

Page 6 of 11

Session
Manager

Image encoder

Application

Frame
Manager

Plugin
Manager

Network encoder

QoS
data

Network transport

Sender Receiver

Session
Manager

Image encoder

Application

Frame
Manager

Plugin
Manager

Network encoder

Session
Manager

Image decoder

Application

Frame
Manager

Plugin
Manager

Network decoder

(This is a fairly high-level description, though it gets into some ideas for
implementation. SeveralAPI calls are describedhere. We havenot given their
prototypes,sincewehaven’tfully fleshedout all of the informationin them;this is
a work in progress.)

Both the sender and receiver processes are started. (See subsection 7.4 for
launching concerns.) They each call MerlotInit to initialize the system. Two
options are set through the MerlotInit call. First, which role this Merlot node
will be playing, sender or receiver. If the call is made by the sender, the location of
the receiver on the network is also given. If the call is made by the receiver, the
TCP port to listen on is specified. Merlot then loads its configuration file, which
defines what image and network plugins are to be used.

The sender opens a TCP connection to the receiver and they handshake, sharing
compatibility information such as byte encoding, desired plugins, etc. This socket
is not expected to have any particular performance characteristics, as it is only used
for control data and quality of service information. The communication of the
frame data is the responsibility of the network codec.

After the sender and receiver have done a handshake, MerlotInit sets up the
session manager, the frame manager, and the plugin manager. The plugin manager
starts separate threads for the image codec and the network encoder. We use
threads for each of these portions so that computation may be overlapped when
possible. The plugin manager loads the shared library plugins, calling MerlotLoad
in each of them to determine information characterizing the plugin.

Note that, to guarantee compatibility, the image encoder and the image decoder
must match, as well as the network encoder and decoder. The three sender threads
are dedicated to the application, the image encoder, and the network encoder,
respectively. The two encoder threads block, waiting for the frame manager to
signal that a frame is ready.

MerlotInit on the receiver spawns similar threads, one for network decoding and
one for image decoding. The two threads block, waiting for image data from the
sender.

The sender application generates frames, giving them to Merlot through the
MerlotSendFrame call. The frame manager adds the frame to its circular buffer of
frames and signals the plugin manager that work may begin on the frame. The
plugin manager tells the image encoder to begin its work. It then returns control to
the application. In the meantime, the image encoder starts work on the frame in the
circular buffer. Since the image encoder may take a significant amount of time to
encode a frame in comparison to the speed that frames are generated, the image
encoder has access to the entire circular buffer, allowing the image encoder to drop
frames as needed or perform lookahead. Once the image encoder finishes encoding
a frame or a partial frame, it passes the data back up to the plugin manager for
delivery. The plugin manager calls the network encoder thread to communicate the
encoded frame data to the receiver. The network encoder contacts the network

Page 7 of 11

decoder across the network and communicates the frame data. The network encoder
informs the session manager that it has communicated the frame.

On the other side of the network, the receiver’s network decoder decodes the data
and delivers it to the plugin manager. The plugin manager hands the data to the
image decoder. The image decoder uses the encoded data to create a final frame.
This frame is given to the frame manager for availability to the receiver application.
The timestamp of this delivery is recorded by the session manager, which
communicates it across the control socket back to the sender’s session manager.
The receiver application uses an API call to retrieve the latest computed image. We
haven’t decided yet whether the API for the receiving application should be a
blocking or a non-blocking API.

 5.3. Image codec details

Image codecs can take two forms: progressive and non-progressive. A non-
progressive codec is one that encodes an entire frame into a single message. This
data is delivered with one call to the network encoder, and the entire frame’s data is
sent across the network to be reconstructed at the receiver.

Alternately, a progressive codec encodes a single frame into multiple data
messages, communicating each message separately across the network. One can
imagine a case where the low frequency portions of an image are identified and
communicated to the receiver, with higher-frequency portions communicated with
additional messages as time progresses. If no additional frame is provided by the
application, thus interrupting the progressive image codec, the entire frame would
eventually be communicated to the receiver. If a new frame is provided by the
application, the progressivity would be halted, and computation started on a new
image. Because of this, it is important for progressive codecs to continue to check
with the frame manager for the availability of new image data.

On the receiver side, each phase of a progressive codec generates an entire image.
This allows the generation of images with increasing detail, yet still providing high
frame rates.

In neither the progressive nor non-progressive cases are the codecs required to
reproduce the input image exactly. They may do so, but lossy compression has
many advantages. The only stipulation is that the output of an image decoder must
generate a full frame at every stage.

 5.4. Network codecs

The image codecs have no knowledge of the network infrastructure. The image
encoder sends its encoded data to the plugin manager. The plugin manager sends
this information to the network encoder for communication. All duties of creating,
using, and tearing down the network connection are the responsibility of the
network encoder. Initially, the network encoder and decoder are given information
about where on the network its counterpart resides, as well as a chance to
handshake across a TCP connection. Using this location information, the sender
and receiver portions of the network codec create one or more connections at

Page 8 of 11

initialization time. Note that TCP is only used for handshaking. No requirement for
TCP is made for actual data communication.

 5.5. Merged codecs

Note that the image codec and the network codec operate independently of each
other. Thus, a merged codec that incorporates both aspects of image encoding and
network delivery may be put into place. In this form, once the codec finishes
encoding an image, it may immediately take action to move it across a network.
This may make sense for hardware-accelerated infrastructures such as Sepia, which
perform both operations at once.

 5.6. Plugin manager

The plugin manager serves as a thin “service” layer between the image codec and
the network codec. It also handles the instantiation and destruction of the codecs.
Since all plugins answer to the same API, we envision the plugin manager
providing the ability to swap out image and network codecs at any point during
runtime, so as to address changing needs.

For example, if the user changes actions, such that instead of viewing a dataset in
detail, he starts to play a movie of a simulation, the plugin manager might be
instructed to swap out the existing image codec and instead load a high-latency,
lossy image codec.

The plugin manager also handles the creation and management of the frame
manager, so that the specific instance can be tuned for the needs of the codecs. (For
instance, an image codec that does not perform frame dropping or lookahead does
not need a circular buffer.)

 5.7. Configuration information

We anticipate that the user will want to modify the behavior of the codecs at
initialization time and during runtime. A communication pathway from the
application, down through the plugin manager, and into the image and network
codecs, is needed for this configuration information. We envision a generalized
preference mechanism based on XML would provide the carrier for this info.

 5.8. Session manager feedback information

The information that the session manager gathers is important for ensuring a steady
image flow. A family of protocols currently exist for streaming multimedia data
(RFC1889, RFC2326). We are currently investigating in what form we will deliver
this capability.

 6. Applications

Using this design, we see several immediate applications which could benefit.

 6.1. OpenGL redirection application

The initial use of the Merlot library will be in the deployment of an application for
OpenGL redirection, MIDAS (Merlot Image Delivery Application Server). The

Page 9 of 11

sender application is an unmodified X11/OpenGL application that has been
“tricked” at runtime into loading a custom library that understands Merlot.

This custom library contacts a MIDAS receiver across the network through a TCP
connection and shares information about display specifications, window locations,
etc. The OpenGL stream is redirected to a high-end display for rendering. When a
frame is finished (upon receipt of a glSwapBuffers call, for instance), the frame is
read into memory through a glReadPixels call and is given to Merlot for
delivery. The receiver receives the frame from Merlot and blits it to the original
application window.

 6.2. Chromium

The readback SPU of Chromium is an ideal image source. We will create a sub-
SPU of readback that contains the Merlot sender library.

It’s not yet clear what would be on the other side of the network. It could be
another SPU which receives the imagery and turns it into a glDrawPixels call to
be further processed through Chromium. But other scenarios are possible.

 6.3. PICA

Merlot could be considered a single communication pathway through the PICA
system. This avenue has yet to be explored.

 6.4. VNC

Merlot could conceivably be used as an encoder for the VNC system. While VNC
is fundamentally a “pull” system, while Merlot has been designed in a “push”
fashion, we would like to explore this possibility.

 7. Future work and unsolved issues

 7.1. Full-screen hardware encoders/decoders

Merlot was originally intended for use in MIDAS. As such, it has been designed
with the idea of processing imagery from and to an OpenGL window.

However, the Merlot library, separated from MIDAS, has no such dependence on
windows. An image source could easily be an entire screen, captured by a video
capture board or through other mechanisms. Much research is being done in this
area, especially at Sandia National Laboratories. While we at LLNL are initially
going to focus on the "in-window" portion of Merlot, we would like to explore the
full-frame perspective.

 7.2. Multiple fan-in/fan-out

Some user environments require a final image to be generated by multiple sources,
such as a cluster in a sort-first configuration. This final image may also need to be
displayed on multiple destinations, as in a tiled-display or a collaborative system.
Merlot was originally designed only to address the point-to-point problem.

Page 10 of 11

However, we do not wish to prevent the ability to use many Merlot streams to
create a system that provides multiple inputs and outputs.

A possible way of providing multiple fan-
outs is to have multiple image/network
encoders in a single node. The session
manager would load multiple plugin
managers, each handling one set of
encoders. This session manager would be
aware of the multiple destinations, and
would be able to respond to performance
requests by the individual streams. A
diagram of such a node might be as seen at
the right.

Similarly, a receiver node may have
multiple network and image decoders.

However, while the encoding and decoding of images can certainly happen through
a mechanism such as this, issues such as varying performance of the links, different
desired frame sizes, and overlapping imagery still have to be worked out. This
work is intended to be done after initial deployment of applications using the point-
to-point version of Merlot has occurred. We include this description here as a seed
for discussion.

 7.3. Synchronized image streams

It might advantageous to use Merlot in parallel, communicating each stream
through a Merlot sender and receiver so as to present an image or set of imagery on
a tiled display. The synchronization of the streams would be needed. This has not
yet been explored.

 7.4. Launching

Some network architectures (MPI, for instance), require that all communication
participants be launched at the same time. Or they may require that all
communicating processes exist when the network resources are requested. Our
initial work will be TCP/IP-based, where this is not a requirement. But with
varying network architectures in mind, no constraints are placed on the launch
order of the sender and receiver processes, as long as they both participate in the
initial handshake.

For ease of use and user transparency, one can imagine environments where the
receiver side of Merlot is automatically launched by the sender through use of ssh
or other mechanisms. While we are not addressing this need during initial
development, we anticipate that we will need to provide an simple launching
mechanism for final deployment.

Page 11 of 11

Application

Frame Manager Session Manager

Plugin Manager Plugin Manager

Image encoder Image encoder

Network encoder Network encoder

Network
stream 1

Network
stream 2

